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Overscreened Kondo problem with large spin and large number of orbital channels:
Two distinct semiclassical limits in quantum transport observables
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We investigate quantum transport through the Kondo impurity assuming both a large number of orbital
channels K � 1 for the itinerant electrons and a semiclassical spin S � 1 for the impurity. The non-Fermi-
liquid regime of the Kondo problem is achieved in the overscreened sector K > 2S. We show that there exist
two distinct semiclassical regimes for the quantum transport through impurity: (i) K � S � 1, differential
conductance vanishes, and (ii) S/K = C with 0 < C < 1/2, differential conductance reaches some nonvanishing
fraction of its unitary value. Using the conformal field theory approach we analyze the behavior of the quantum
transport observables and residual entropy in both semiclassical regimes. We show that the semiclassical limit
(ii) preserves the key features of resonance scattering and the most essential fingerprints of the non-Fermi-liquid
behavior. We discuss possible realization of two semiclassical regimes in semiconductor quantum transport
experiments.
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Introduction. The paradigmatic phenomenon of Kondo
screening [1] provides an understanding of a plethora of
problems associated with the physics of strongly correlated
electron systems [2]. Classification of the Kondo effects orig-
inated from the exchange interaction between the localized
impurity spin S and the itinerant electrons via several con-
duction channels K has been put forwarded by Nozieres and
Blandin (NB) [3]. The seminal work of Nozieres [2] based
on the local Fermi-liquid (FL) theory provides a consistent
description for the case of 2S � K. Different theoretical and
numerical techniques have been established [4–8] for the
study of Kondo effects in the non-FL regime associated with
the condition K > 2S .

The celebrated work of Affleck and Ludwig (AL) [8,9]
based on the boundary conformal field theory (BCFT) is one
of the major breakthroughs in understanding the multichan-
nel Kondo (MCK) effects in the non-FL (NFL) regime. The
asymptotic solution of related problems in MCK has also been
obtained by different semiclassical techniques such as large-K
expansion [8,10,11]. However, to the best of our knowledge,
the existing works performed the large-K expansion keeping
the impurity spin S fixed, that is to say, K → ∞, S/K → 0.
Yet another interesting semiclassical limit which received no
attention so far results from the consideration of S → ∞,
K → ∞ with S/K → C, 1/2 > C > 0. While the first limit
S/K → 0 was previously explored in detail, the investigation
of the physics of MCK effects associated with the second
semiclassical limit S/K → C is the main focus of the present
work.

Mathematical formulation. The MCK effect originally in-
troduced by NB describes the exchange coupling between the

K degenerate channel of spin- 1
2 conduction electrons and the

impurity with an effective spin S . The corresponding Hamil-
tonian reads

H=
∑

k

εk
(
ψα,i

k

)†
ψkα,i + JS ·

∑
kk′

(
ψα,i

k

)† σβ
α

2
ψk′β,i, (1)

where α, β =↑,↓ are the spin and i=1, 2, . . . ,K stand for
spin and channel indices, respectively, and σβ

α are the Pauli
matrices acting in the spin sector. The operator ψkα,i annihi-
lates an electron in the kα state of the conduction channel i.
The strength of the exchange interaction is accounted for by
the parameter J .

Under the s-wave approximation followed by the lineariza-
tion of the dispersion relation, Eq. (1) is effectively reduced
to the one-dimensional problem. Describing the left- and
right-moving fermions by the operators ψL,αj and ψR,αj, re-
spectively, the one-dimensional version of the MCK effect in
the weak-coupling regime is given by [9]

H = ivF

2π

∫ ∞

0
dx[ψ†

L,αj(x)∂xψ
†
L,αj(x) − ψ

†
R,αj(x)∂xψ

†
R,αj(x)]

+ vFλψαi
L (0)† σβ

α

2
ψL,βj(0) · S, (2)

with the boundary condition (BC) ψR,αj(0) = ψL,αj(0). In
Eq. (2), vF stands for the Fermi velocity, λ ≡ νJ for ν being
the density of states at the Fermi level. For the following
discussion we consider vF = 1 and always restrict ourselves
to the overscreened situation K > 2S .

Strong-coupling description. The strong-coupling descrip-
tion of the FL case can be trivially accounted for by a simple
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FIG. 1. Schematic representation of two different semiclassical
limits of the overscreened Kondo problem described by K conduc-
tion channels and arbitrary spin amplitude S (large K is denoted
by black, large S is illustrated by red). The condition K = 2S de-
fines the fully screened Kondo regime characterized by Fermi-liquid
behavior. Two distinct semiclassical limits corresponds to a largely
overscreened model S/K → 0 (left) versus a weakly overscreened
model S/K → C for C → 1/2 (right). See text for details.

change in the BC such that ψR,αj(0) = −ψL,αj(0) resulting in
the π/2 phase shift between incoming and outgoing electron
states. The description of the corresponding BC in the NFL
regime can be done straightforwardly in terms of the method
of BCFT developed by AL. One of the remarkable results of
AL BCFT is the exact calculation of the equal-time correlation
function of left- and right-moving fermions providing the gen-
eral expression of single-particle scattering amplitude S [8,9],

S = cos

[
π (2S + 1)

K + 2

]/
cos

[ π

K + 2

]
. (3)

The zero-energy limit of the transport properties in MCK
are solely governed by the scattering amplitude S. As seen
from the scattering matrix (3), S vanishes for the special
setup satisfying the condition K = 4S , which amounts to the
complete absence of single-particle transport such as the case
K = 2 and S = 1/2 of extreme experimental interest [12].
Another interesting observation of S is that it becomes pos-
itive for 4S < K and remains negative for the situation 4S >

K both satisfying the condition of the overscreening K > 2S .
The latter case of 2S > K/2 > S results in a rather nontrivial
property that the scattering amplitude asymptotically becomes
S → −1. These situations have been schematically shown
in Figs. 1 and 2. Since the amount of coherent transport at
zero energy or the conductance is quantified by the quantity
1 − S, these three cases of the overscreened Kondo effect are
practically very different. Given that, we propose three further
different cases of overscreened Kondo effects: (i) K = 4S
with S = 0, (ii) 4S < K with S > 0, and (iii) 2S > K/2 > S
with S < 0.

Another exact result from AL BCFT is the expression of
residual impurity entropy Simp [13],

Simp = ln

(
sin

[
π (2S + 1)

K + 2

]/
sin

[ π

K + 2

])
, (4)

being bounded between ln
√

2 and ln(2S + 1). As the scatter-
ing amplitude vanishes at the K = 4S , the impurity entropy
rather attains its maximum value at the same point (see Fig. 2)
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FIG. 2. The behavior of single-particle scattering amplitude S
and the residual impurity entropy Simp with varying the size of the
impurity spin S = 1/2–25 for fixed numbers of conduction channel
K = 51 in overscreened Kondo effects. Each plots can be further
classified into three parts corresponding to the three distinct limits
of multichannel Kondo effects in the overscreening region (see text
for details).

with the maximum value

Smax
imp = ln

[
csc

( π

K + 2

)]
. (5)

In the following, we characterize three distinct regimes of
MCK Kondo effect in NFL regime by two different semiclas-
sical regimes: (i) S/K → 0 and (ii) S/K → C, 1/2 > C > 0
(see Fig. 1). We note that the first limit S/K → 0 was previ-
ously explored in detail, therefore, here we mainly focus on
the description of the second semiclassical limit S/K → C.

Residual quantum entropy. Equation (4) results in the large-
K limit of impurity entropy for fixed S as [8,10]

Simp = ln

[
(2S + 1)

(
1 − 2π2S (S + 1)

3K2

)]
+ O

(
1

K3

)
, (6)

for K → ∞ with S/K → 0, Simp = ln(2S + 1). This is the
expected result since K → ∞ (keeping S fixed) results in
the unstable zero-coupling fixed point. The degeneracy at the
zero-coupling fixed point is simply that of the decoupled spin
2S + 1.

To unveil another limit S/K → C of impurity entropy,
we consider the extreme case of K = 2S + 1 fulfilling the
condition 2S > K/2 > S and S/K → C. This limit can also
be thought of as that corresponding to weakly overscreened
Kondo effects. In the following, we denote the corresponding
quantities for the K = 2S + 1 limit by the primed notation.
The large-K limit of the residual entropy in this case reads

S′
imp = ln 2 − π2

2K2
+ O

(
1

K3

)
. (7)

The seemingly trivial Eqs. (6) and (7) rather possess profound
physical difference. While the residual entropy increases with
impurity spin in the limit S/K → 0, K → ∞, it saturates
at the constant value of ln 2 for K = 2S + 1. In addition, it
appears that the large-K limit of impurity entropy for S = 1/2
formally coincides with that for the K = 2S + 1 case. One
can see that the ground-state degeneracy in the semiclassi-
cal limit K → ∞ with S/K → 0 approaches the pure spin
degeneracy gS = 2S + 1 while in the semiclassical limit pre-
serving S/K → 1/2 the quantum degeneracy approaches the
K → ∞ S = 1/2 value gK→∞,S=1/2 = 2.

Charge transport. The zero-temperature conductance of
the MCK effect is expressed in terms of the scattering
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amplitude [8]

G(T = 0) = 2e2

h

1 − S

2
. (8)

For the qualitative understanding of the conductance in the
semiclassical regime of MCK, we perform the large-K ex-
pansion of S in the above-mentioned two different limits
(S/K → 0 and K = 2S + 1), resulting in

S = 1 − 2π2S (S + 1)

K2
+ O

(
1

K3

)
, (9)

S′ = −1 + 3π2

2K2
+ O

(
1

K3

)
. (10)

Equations (8)–(10) then imply that the K → ∞ transport is
blocked in the limit of S/K → 0 while it reaches the unitary
value in the other limit of K = 2S + 1,

G(T = 0)|K→∞ = 0,

G′
0 ≡ G′(T = 0)|K=2S+1→∞ = 2e2

h
. (11)

The remarkable difference in behavior of differential conduc-
tance is related to the sign inversion in the leading term of the
scattering matrix expansion (10), see also Fig. 2.

The leading T dependence of transport properties in MCK
follows from the perturbation theory in the leading irrelevant
coupling constant λ at the low-energy fixed point [8]. AL then
showed that the NFL BC associated with overscreened MCK
effect results in the dimension � of the leading operator (LIO)
λ at the fixed point

� = 2

2 + K → 2

K + O

(
1

K2

)
. (12)

The scaling argument then defines the low-energy coupling
constant as λ 
 ±1/T �

K (either sign is possible depending on
the details of the model). The finite temperature (T � TK)
conductance of MCK effect is then given by [8]

G(T ) = 2e2

h

1

2
[1 − S − λ P (�,S )(2πT )�], (13)

where P (�,S ) = 2N sin(π�)C (�). The �-dependent pa-
rameter C (�) has recently been computed in Ref. [14] and
AL provided the parameter N which depends on � as well
as the impurity spin S

N 2 = 9

8

�
( K
K+2

)2[
cos

(
2π
K+2

) − cos
( 2π (2S+1)

K+2

)]
[
2 cos

(
2π
K+2

) + 1
][

cos
(

π
K+2

)
�

(K+1
K+2

)
�

(K−1
K+2

)] ,

C (�) = − 1

�(1 + �)
. (14)

Similar to the previous discussion of the residual entropy,
we now perform the large-K expansion of finite-temperature
differential conductance for two different limits: S/K → 0

and K = 2S + 1, to obtain

G(T )|S/K→0 = e2

h

[
2π2

√
3S (S+1)

(
2πT

TK

)�(
1

K− 4

K2

)]
,

G′(T )
∣∣
S/K→ 1

2
= G′

0 + e2

h

[
3π2

(
2πT

TK

)�(
1

K − 4

K2

)]
.

(15)

Equation (15) shows a nontrivial equality relation δG(T,S =
1/2) = G′(T ) − G′

0 implying that the finite-temperature cor-
rections in these two limits are qualitatively different. As an
additional note, we stress that the behavior of thermal trans-
ports (such as thermopower, thermo-electric conductance) as
described in Ref. [14] are also different in these two limits.

Thermoelectric transport. Thermoelectric transport mea-
surement at the nanoscale often provides invaluable in-
formation that cannot be achieved by charge transport
measurements [15]. In addition, it is commonly believed that
thermopower (Seebeck coefficient) is directly connected to
the entropic heat production via the Kelvin formula [16].
While the latter is well-accepted fact for the general situa-
tion of a FL ground state, research is still ongoing to find if
there exists some relation between entropy and thermopower
in the case of the NFL ground state [17]. Calculation of
thermopower in the MCK effect will thus shed some light
on this topic. So far our discussion has been based on the
explicit particle-hole (PH) symmetric low-energy model of
transport in MCK effects. Such symmetry, however, results
in vanishing thermopower. The explicit consideration of po-
tential scattering [14] in MCK problems gives rise to the
asymmetric spectral function which provides the finite-energy
transport in the system. By considering the constant phase
shift δP produced by the potential scattering, the leading tem-
perature dependence of thermopower, Sth, has been calculated
in Ref. [14]:

Sth = λM (�,S ) sin 2δP(2πT )�, (16)

where M (�,S ) = 2N π sin(π�)D (�) with D (�) =
1/(1 − �)(2 + �). From the above equation is clearly seen
that, in the semiclassical limit S/K → 0, Sth still depends
on S (as similar to the conductance behavior). The nontrivial
limit of K = 2S + 1, however, results in the thermopower
which is qualitatively the same as that of S = 1/2 with
K → ∞. In addition, from our previous discussion, we see
that MCK effects always possess finite residual entropy
(zero-temperature contribution). The thermopower as
expressed in Eq. (16) certainly vanishes for T → 0. This
observation clearly indicates that the thermopower and
entropy of a NFL state are not interrelated in such as direct
way as in the FL case [16]. It has been explicitly shown that
all the transport quantities (including thermoelectric power)
of the MCK impurity explicitly depend on the magnitude
of the impurity spin S and the number K of conduction
channels [14]. The two different semiclassical limits can then
be investigated in the analogous way, as done for charge
conductance above.

Thermodynamics. From the AL BCFT, it can be straight-
forwardly seen that the thermodynamic measure of impurity
specific heat Cimp can be solely described in terms of K, which
is independent of S [18]. The investigation of two different
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semiclassical limits in the spirit of seminal works [19] for
other thermodynamical parameters of MCK impurities (in-
cluding behavior in external magnetic field) can thus be an
interesting future project.

Discussion. Two distinct semiclassical limits can be exper-
imentally accessed through quantum transport measurements
in semiconductor nanodevices. The limit K � 1 can be engi-
neered in the setup consisting of a small lateral quantum dot
(single-electron transistor) surrounded by K − 1 large metal-
lic quantum dots (metallic droplets) controlled by independent
gates (see detailed discussion in Ref. [14]). The condition
S � 1 can be achieved by various methods. The first sug-
gestion is based on replacement of the small semiconductor
quantum dot by a set of small capacitively coupled quantum
dots in such a way that the large spin multiplet S � 1 is
separated from the smallest spin multiplet (either singlet or
doublet) by an energy gap smaller than the Kondo tempera-
ture. Second suggestion is to use the Fock-Darwin states [20]
of a small semiconductor quantum dot for achieving the
large spin configuration. The degeneracy of the multi-orbital
states of the Fock-Darwin atom can be adjusted by external
magnetic field [21]. Spins of electrons occupying different
orbitals are aligned in accordance with Hund’s rule facilitating
the large S configuration. While NFL regimes in quantum
transport have not yet been experimentally accessible with
vertical QDs, achieving it remains a challenging problem. Us-
age of surrounding vertical dots or metallic droplets similarly
to lateral dots experiments can be an interesting direction to
try. The semiclassical limit S/K = C with C → 1/2 can be
controlled in a Fock-Darwin atom by proper balance between
the number of metallic droplets and the quantum dot spin. The
manifestation of pronounced non-Fermi-liquid behavior in the
quantum transport observables preserved in the semiclassical
regime is the key prediction of this work.

Conclusion. Based on Affleck-Ludwig boundary confor-
mal field theory for multichannel K overscreened Kondo
effects with arbitrary impurity spin S , we showed that there
exists two different semiclassical limits resulting in two strik-
ingly different conclusions. Namely, we demonstrated that
the commonly studied trivial semiclassical limit K → ∞,
S/K → 0 and the nontrivial counterpart S → ∞, K → ∞
with S/K → C, 1/2 > C > 0 are two very different limits.
While the former case with K → ∞ corresponds to vanish-
ing transport, the corresponding latter case amounts to the
complete coherent transport there by reaching the unitary con-
ductance. Considering these observations, we propose three
different classes of the overscreened Kondo effect K > 2S: (i)
K = 4S with vanishing scattering amplitude S = 0, (ii) 4S <

K with S > 0, and (iii) 2S > K/2 > S with S < 0. The in-
teresting interplay of residual entropy in these three classes of
overscreened Kondo effects has been investigated. We believe
that the two proposed ways of doing semiclassical calcula-
tions in multichannel Kondo effects would be of paramount
importance for benchmarking the numerical results and the-
oretical calculations. Although, in this work, we just showed
the phenomenology of two different semiclassical approaches
with an explicit consideration of thermoelectric transport and
residual entropy, the corresponding investigations for other
quantities such as heat transport, finite-temperature coherent
transport, and thermodynamics remain valid avenues for fu-
ture research.
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